181 research outputs found

    Approximately Counting Triangles in Sublinear Time

    Full text link
    We consider the problem of estimating the number of triangles in a graph. This problem has been extensively studied in both theory and practice, but all existing algorithms read the entire graph. In this work we design a {\em sublinear-time\/} algorithm for approximating the number of triangles in a graph, where the algorithm is given query access to the graph. The allowed queries are degree queries, vertex-pair queries and neighbor queries. We show that for any given approximation parameter 0<ϵ<10<\epsilon<1, the algorithm provides an estimate t^\widehat{t} such that with high constant probability, (1ϵ)t<t^<(1+ϵ)t(1-\epsilon)\cdot t< \widehat{t}<(1+\epsilon)\cdot t, where tt is the number of triangles in the graph GG. The expected query complexity of the algorithm is  ⁣(nt1/3+min{m,m3/2t})poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right)\cdot {\rm poly}(\log n, 1/\epsilon), where nn is the number of vertices in the graph and mm is the number of edges, and the expected running time is  ⁣(nt1/3+m3/2t)poly(logn,1/ϵ)\!\left(\frac{n}{t^{1/3}} + \frac{m^{3/2}}{t}\right)\cdot {\rm poly}(\log n, 1/\epsilon). We also prove that Ω ⁣(nt1/3+min{m,m3/2t})\Omega\!\left(\frac{n}{t^{1/3}} + \min\left\{m, \frac{m^{3/2}}{t}\right\}\right) queries are necessary, thus establishing that the query complexity of this algorithm is optimal up to polylogarithmic factors in nn (and the dependence on 1/ϵ1/\epsilon).Comment: To appear in the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Limits of Ordered Graphs and their Applications

    Full text link
    The emerging theory of graph limits exhibits an analytic perspective on graphs, showing that many important concepts and tools in graph theory and its applications can be described more naturally (and sometimes proved more easily) in analytic language. We extend the theory of graph limits to the ordered setting, presenting a limit object for dense vertex-ordered graphs, which we call an \emph{orderon}. As a special case, this yields limit objects for matrices whose rows and columns are ordered, and for dynamic graphs that expand (via vertex insertions) over time. Along the way, we devise an ordered locality-preserving variant of the cut distance between ordered graphs, showing that two graphs are close with respect to this distance if and only if they are similar in terms of their ordered subgraph frequencies. We show that the space of orderons is compact with respect to this distance notion, which is key to a successful analysis of combinatorial objects through their limits. We derive several applications of the ordered limit theory in extremal combinatorics, sampling, and property testing in ordered graphs. In particular, we prove a new ordered analogue of the well-known result by Alon and Stav [RS\&A'08] on the furthest graph from a hereditary property; this is the first known result of this type in the ordered setting. Unlike the unordered regime, here the random graph model G(n,p)G(n, p) with an ordering over the vertices is \emph{not} always asymptotically the furthest from the property for some pp. However, using our ordered limit theory, we show that random graphs generated by a stochastic block model, where the blocks are consecutive in the vertex ordering, are (approximately) the furthest. Additionally, we describe an alternative analytic proof of the ordered graph removal lemma [Alon et al., FOCS'17].Comment: Added a new application: An Alon-Stav type result on the furthest ordered graph from a hereditary property; Fixed and extended proof sketch of the removal lemma applicatio

    Hard Properties with (Very) Short PCPPs and Their Applications

    Get PDF
    We show that there exist properties that are maximally hard for testing, while still admitting PCPPs with a proof size very close to linear. Specifically, for every fixed ?, we construct a property P^(?)? {0,1}^n satisfying the following: Any testing algorithm for P^(?) requires ?(n) many queries, and yet P^(?) has a constant query PCPP whose proof size is O(n?log^(?)n), where log^(?) denotes the ? times iterated log function (e.g., log^(2)n = log log n). The best previously known upper bound on the PCPP proof size for a maximally hard to test property was O(n?polylog(n)). As an immediate application, we obtain stronger separations between the standard testing model and both the tolerant testing model and the erasure-resilient testing model: for every fixed ?, we construct a property that has a constant-query tester, but requires ?(n/log^(?)(n)) queries for every tolerant or erasure-resilient tester

    Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

    Get PDF
    We introduce a new model for testing graph properties which we call the rejection sampling model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires complexity Omega~(n^2). Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions of the form f : {0,1}^n -> {0,1}: - Tolerant k-junta testing with non-adaptive queries requires Omega~(k^2) queries. - Tolerant unateness testing requires Omega~(n) queries. - Tolerant unateness testing with non-adaptive queries requires Omega~(n^{3/2}) queries. Given the O~(k^{3/2})-query non-adaptive junta tester of Blais [Eric Blais, 2008], we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given the O~(n^{3/4})-query unateness tester of Chen, Waingarten, and Xie [Xi Chen et al., 2017] and the O~(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri [Roksana Baleshzar et al., 2017], we conclude that tolerant unateness testing requires more queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first separation between tolerant and non-tolerant testing for a natural property of Boolean functions
    corecore